
Turning the wheel -
Streaming 4.4 billion 
events with Apache Kafka

Simon Aubury

April 2019

Streaming customer, policy and vehicle 

information via Apache Kafka and MongoDB –

and what we learnt on the way …



• Context - what problem are we trying to 

solve

• Architecture of our data flow

• Kafka & Kafka Connect

• Challenges .. and solutions

2

Agenda
Tonight



3

We’ve a lot of data
Context #1



4

We’ve a lot of systems
Context #2

Customer Data

Vehicles Data

Policy Data

Single View

Digital Channels

• Scalable

• Secure

• Robust

• Fast / Timely

• Retain History



5

We want to tie it together
Context #3



What is Kafka?
A very quick into

Apache Kafka : Unified, high-throughput, low-

latency platform for handling real-time data feeds

• Originally developed by LinkedIn, open sourced 

in early 2011

• “The global commit log thingy”

• Kafka maintains feeds of messages in topics

• Appends ; ordered, immutable sequence

Credit: https://www.confluent.io/blog/stream-data-platform-1/



Cleanser

7

Architecture of our data flow
Lots of boxes

Customer (DB2 / Linux)

Cars (DB2 / zOS)

Policy (Oracle)
Transformer/

Matcher



8

Part 1 - Extract
Source System Low Touch Data Acquisition



9

Realtime Capture
Change Data Capture from System of Record

Policy (Oracle / Linux)

Tables

Redo Log

Cleanser

Topic: Cleansed Table

Topic: CDC Stream

CDC capture

Topic: Initial Snapshot

Kafka Connect

Schema 

Registry



10

Part 2 – Transformation & 
Matching 
Finding stuff



11

Transform & Match

Transformer/

Matcher



12

Part 3 – Serving Layer
Sinking Results



13

Kafka Connect

• Distributed, scalable, fault-tolerant service 

designed to reliably stream data between 

Kafka and other data systems 

• Source Connectors import data from 

another system (e.g. a relational database 

into Kafka) 

• Sink Connectors export data (e.g. the 

contents of a Kafka topic to an HDFS file).



14

Kafka Connect Sink
Writing to MongoDB Serving Layer

Kafka 

Connect

{

"connector.class": 

"at.grahsl.kafka.connect.mongodb.MongoDbSinkConnector",

"topics": ”sva-prod",

"mongodb.connection.uri": "mongodb://sva-prod.dataeng.internal:27017/",

"mongodb.collection": ”sva-vehicle

}



15

What did we discover?
Slow to fast … to really fast!



16

Challenge
Lots of data



After: add cache for schema lookup

200 records / sec / table 

17

Hot code #1
A bit of caching Before: very slow transform

30 records / sec / table



After: add cache for field metadata

5,500 records / sec / table 

18

Hot code #2
A bit more caching Before: still slow transform

200 records / sec / table 



19

Horizontal scaling?
Theory

To scale out, you simply start another instance of your stream processing application, 

e.g. on another machine. The instances of your application will become aware of each other 

and automatically begin to share the processing work.

https://www.confluent.io/blog/elastic-scaling-in-kafka-streams/



20

Horizontal scaling … scales horizontally!
Testing



21

Horizontal scaling … meet efficient code
Reality

30 records / sec

Approx 100,000 / hr 

33,500 records / sec

Approx 130 mill / hr 



22

• Architecture of our data flow

– Extract - Low touch CDC

– Transformation & Match

– Serving ; Kafka & Kafka Connect

• Solutions for high performance

Summary
What did we cover again?



Questions?

00 Month 2018

Presentation title

23




