

Streaming customer, policy and vehicle information via Apache Kafka and MongoDB – and what we learnt on the way ...

Simon Aubury

April 2019

Agenda

Tonight

 Context - what problem are we trying to solve

- Architecture of our data flow
- Kafka & Kafka Connect
- Challenges .. and solutions

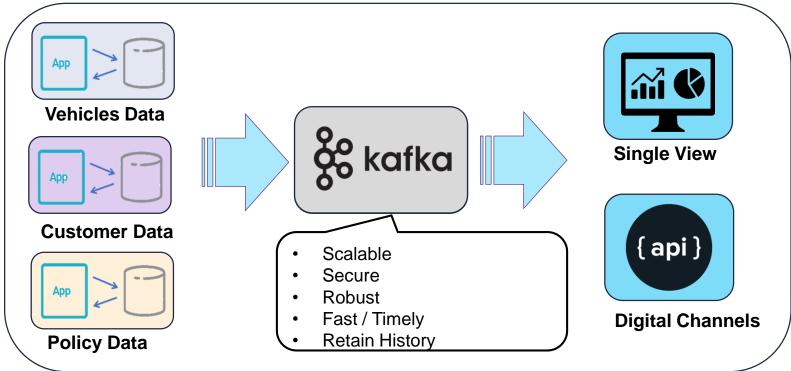
We've a lot of data

Context #1

mvyear	mvmake	mvmodel	mvbody
1886	RUDGE	PENNY FARTHING	MBIKE
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1896	FORD	QUADRICYCLE	CONVT
1900	MERCEDES		CONVT

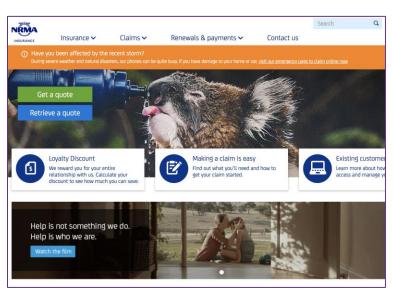
We've a lot of systems

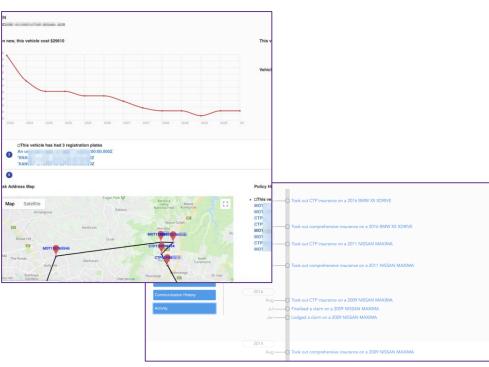
Context #2



We want to tie it together

Context #3





What is Kafka?

A very quick into

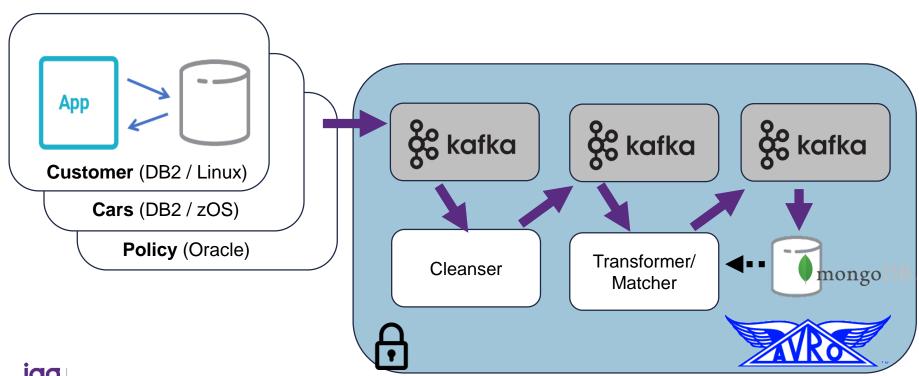
Apache Kafka: *Unified, high-throughput, low-latency platform for handling real-time data feeds*

- Originally developed by LinkedIn, open sourced in early 2011
- "The global commit log thingy"
- Kafka maintains feeds of messages in topics
- Appends; ordered, immutable sequence



Architecture of our data flow

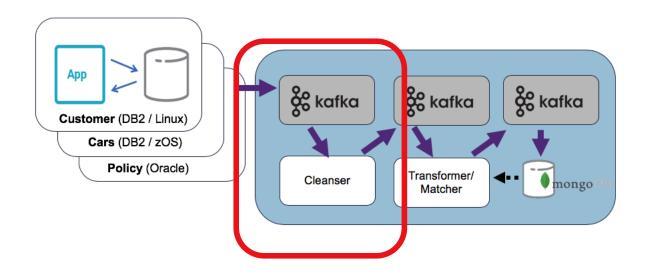
Lots of boxes

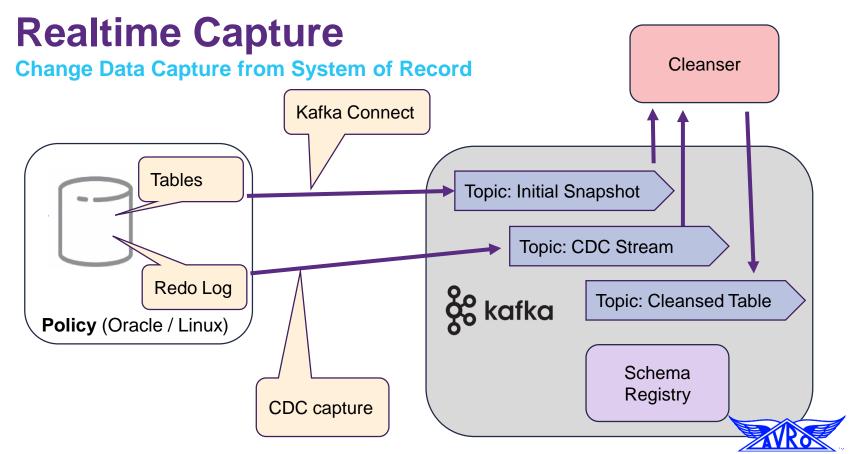


iag

Part 1 - Extract

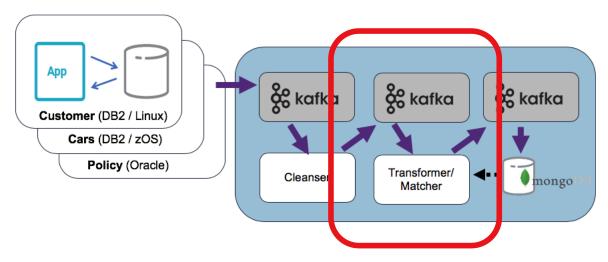
Source System Low Touch Data Acquisition





Part 2 – Transformation & Matching

Finding stuff



Transform & Match

Transformer/ Matcher

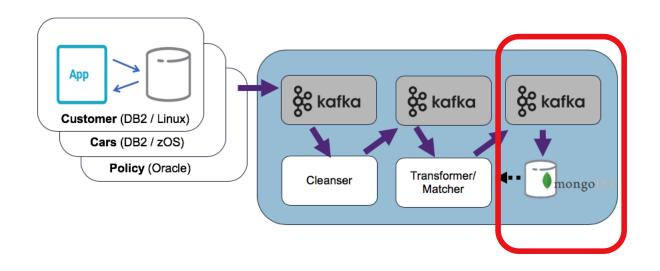
```
CREATE STREAM insurance_event_with_repairer AS \
SELECT *, geo_distance(iel.pc_lat, iel.pc_long, rct.lat, rct.long,
'km') AS dist_to_repairer_km
FROM insurance_event_with_location iel \
INNER JOIN repair_center_tab rct ON iel.pc_state = rct.repair_state;
```



```
final KTable<CcuserCcPolicvKev. ClaimDetails> claimDetailsTable = ccPiSorStreams.claim() KSt
    .flatMapValues(statefulFilter(validClaim)) KStream<CcuserCcClaimKey, CcuserCcClaimEnvelope>
   .mapValues((k, v) -> v.getAfter()) KStream<CcuserCcClaimKey, CcuserCcClaim>
    .leftJoin(
       ccPiGlobalTables.brandExt(),
       (k, v) -> new BrandTypeCodeKey(v.getCLAIMNUMBER().substring(0, 3).toUpperCase()),
       (claim, brandExtEnv) -> {...}) KStream<CcuserCcClaimKey, ClaimDetails>
    .groupBy((k, v) -> new CcuserCcPolicyKey(v.getPolicyId()), serdes.groupedWith()) KGrouped
   .reduce((prev, latest) -> latest, serdes.materializedAs( topicName: "claimDetails")) KTabl
    .join(
       policyTable,
        (claimDetails, policy) ->
            ClaimDetails.newBuilder(claimDetails)
                .setPolicyDetails(
                    PolicyDetails.newBuilder()
                        .setBrand(policy.getDIDISTRIBUTOR())
                        .setPolicyNumber(policy.getPOLICYNUMBER())
                        .build())
                .build().
        serdes.materializedAs( topicName: "claimDetailsWithPolicy"));
```

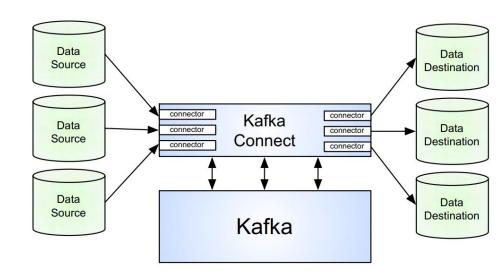

Part 3 – Serving Layer

Sinking Results



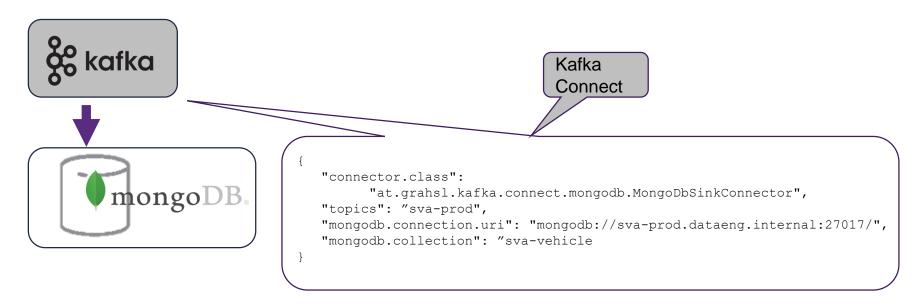
Kafka Connect

- Distributed, scalable, fault-tolerant service designed to reliably stream data between Kafka and other data systems
- Source Connectors import data from another system (e.g. a relational database into Kafka)
- Sink Connectors export data (e.g. the contents of a Kafka topic to an HDFS file).



Kafka Connect Sink

Writing to MongoDB Serving Layer

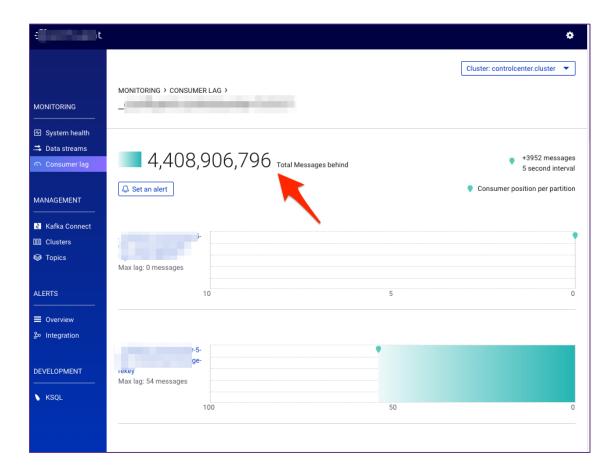


What did we discover?

Slow to fast ... to *really* fast!

Challenge

Lots of data



Hot code #1

A bit of caching

Before: very slow transform 30 records / sec / table

```
doApply = transform[R](new AvroData(new AvroDataConfig(props)), schemaFetcher, registerSchema)

doApply = transform[R](new AvroData(new AvroDataConfig(props)), cachingSchemaFetcher, registerSchema)
```

After: add cache for schema lookup 200 records / sec / table

```
val cachingSchemaFetcher: ConnectRecord[R] => Throwable \/ Schema =
  record => schemaCache.get(record.topic()) match {
    case Some(schema) => schema.right[Throwable]
    case None =>
        val result = for {
        initTopicName <- \/.fromEither(TopicName.fetch(record.topic))
            .leftMap(_ => new IllegalArgumentException(s"Invalid init topic format: ${record.topic}"))
        schema <- schemaFetcher.apply(initTopicName)
    } yield schema
    result.foreach(schema => schemaCache = schemaCache + (record.topic() -> schema))
    result
}
```


Hot code #2

A bit more caching

Before: still slow transform 200 records / sec / table

```
doApply = transform[R](new AvroData(new AvroDataConfig(props)), cachingSchemaFetcher, registerSchema)
doApply = transform[R](new AvroData(new AvroDataConfig(props)), cachingSchemaFetcher, registerSchema, cachingDocParser)
```

```
After: add cache for field metadata 5,500 records / sec / table
```

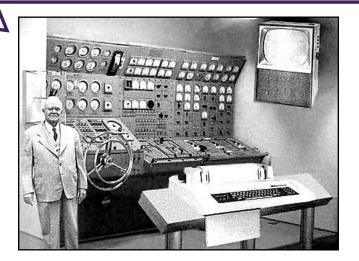
```
val cachingDocParser: String => String \/ PwxAvroFieldDocComment =
  docField => docCommentCache.get(docField) match {
    case Some(docComment) => docComment.right[String]
    case None =>
      val result = PwxAvroFieldDocComment.parse(docField)
      result.foreach(docComment => docCommentCache = docCommentCache + (docField -> docComment))
      result
}
```


Horizontal scaling?

Theory

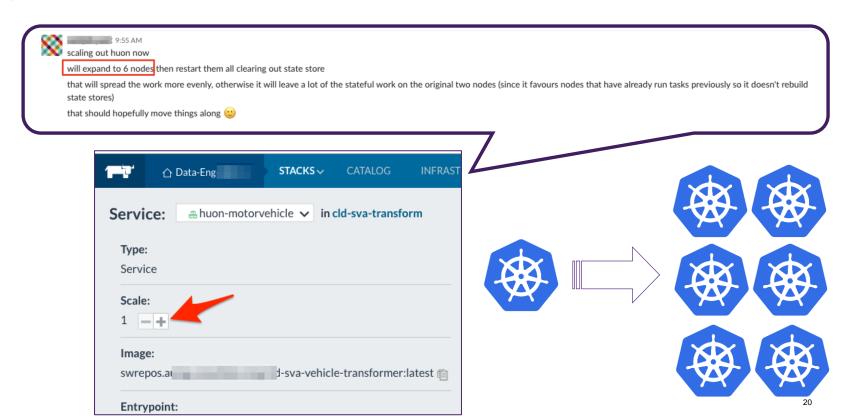
To scale out, you simply start another instance of your stream processing application, e.g. on another machine. The instances of your application will become aware of each other and automatically begin to share the processing work.

https://www.confluent.io/blog/elastic-scaling-in-kafka-streams/



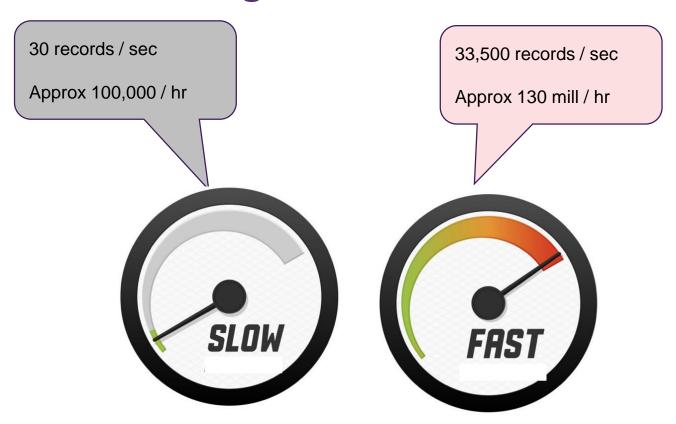
Horizontal scaling ... scales horizontally!

Testing



Horizontal scaling ... meet efficient code

Reality



Summary

What did we cover again?

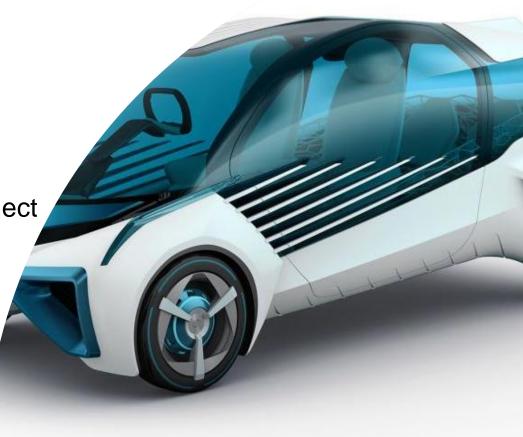
Architecture of our data flow

–Extract - Low touch CDC

-Transformation & Match

-Serving; Kafka & Kafka Connect

Solutions for high performance



Questions?

Australia

