Can ML predict where my cat is now?

Big Data Analytics Meetup

Simon Aubury

/thoughtworks

Simon Aubury

Principal Data Engineer

/thoughtworks

Could I train a model to predict where Snowy would go throughout her day?

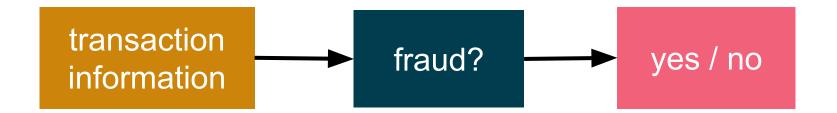
Part 1 - ML Bootcamp

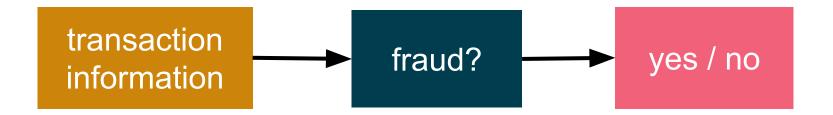
/thoughtworks

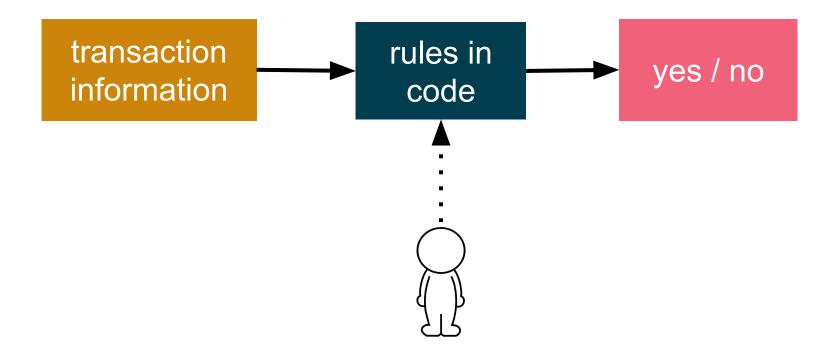
Bootcamp

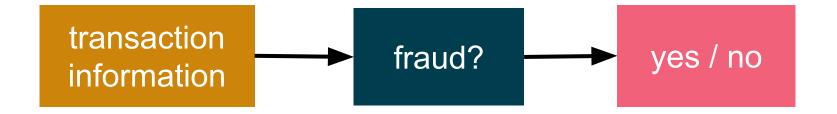
What are the sort of scenarios we see ML useful for?

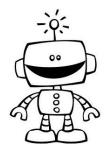
Predicting a value/category	Recommendations	Natural language understanding	lmage understanding
Predicting a numerical value based on the sequence of prior values • How much will this house sell for? • How long until a specific component in a factory fails? • Is a user { New, Established, Fickle } ?	Understand the past relationship of users and items so we can suggest new items to users. • Netflix • Amazon • People you might know; LinkedIn	NLU is an obvious place to build on for clients that already have lots of text • Very close relationship to search	Image understanding has made huge progress in last 5 years • Convolutional neural networks are the key technique • Provide the ability to convert from images to numerical representation

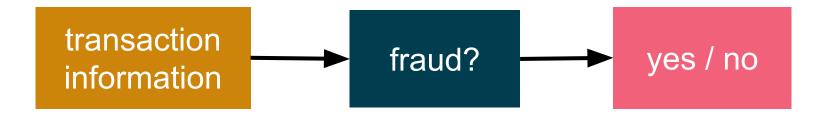




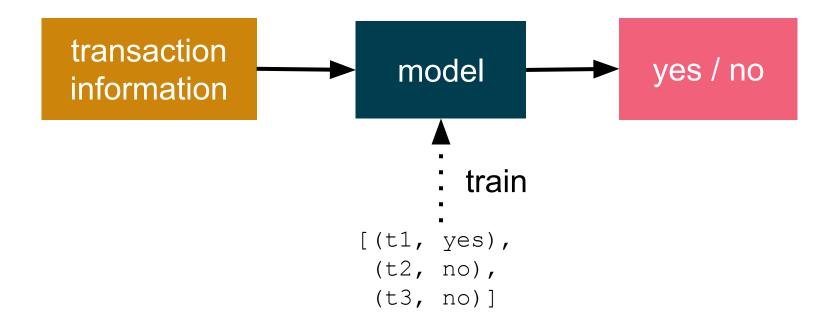


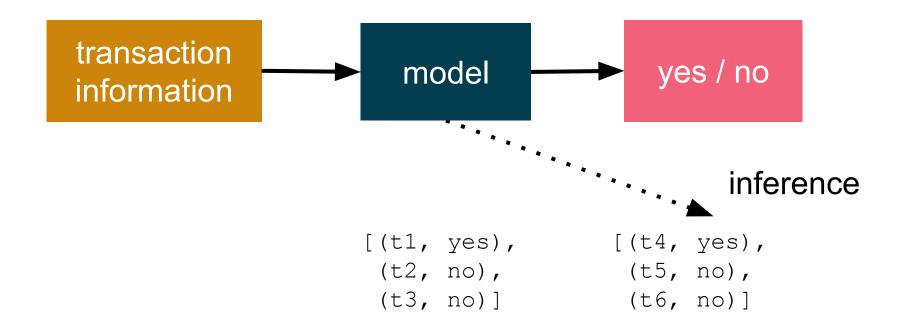


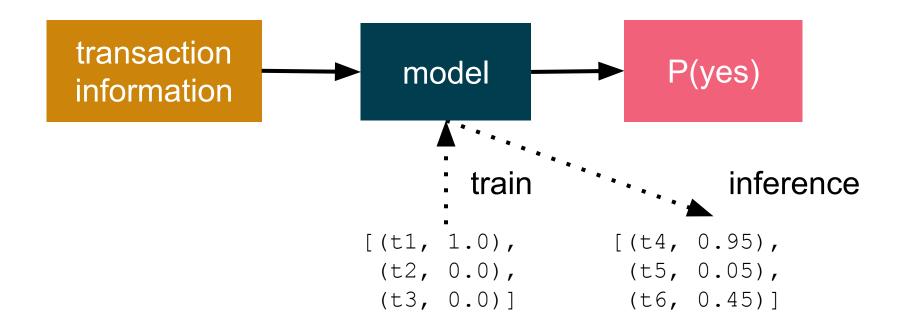


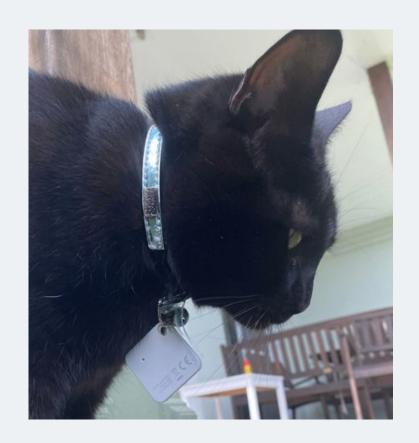


```
[(t1, yes),
  (t2, no),
  (t3, no),
  ...]
```





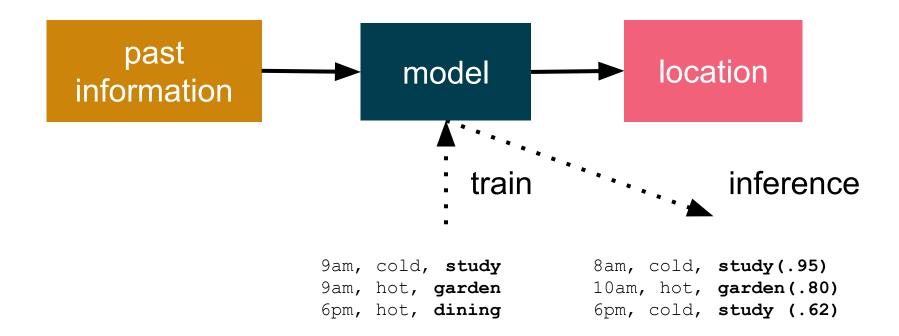


Cats

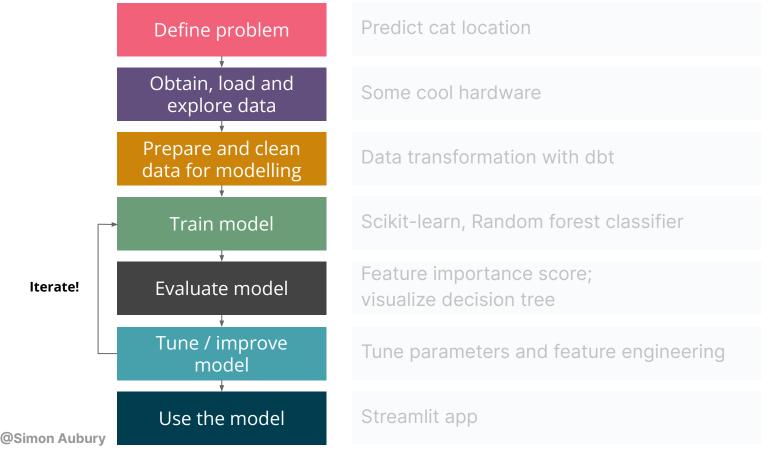
What does this mean?

© 2022 Thoughtworks

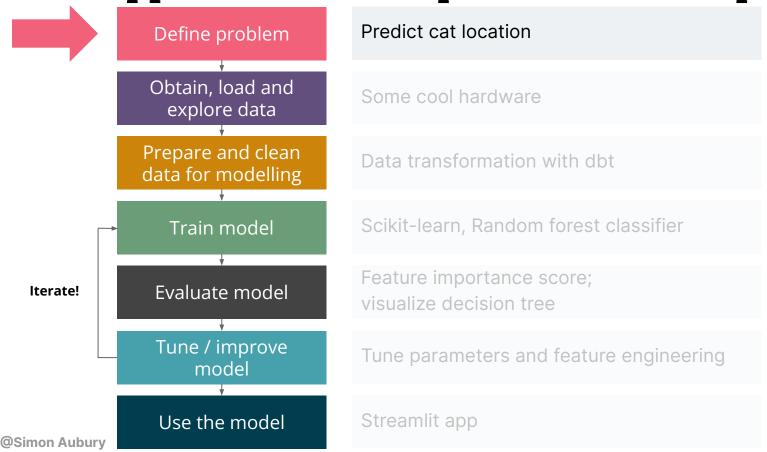
Cat location prediction



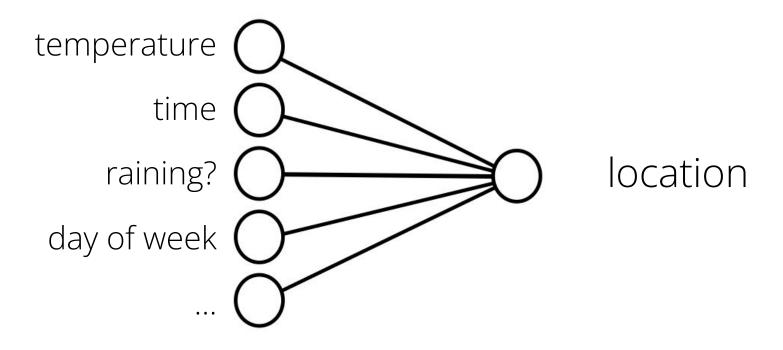
How to approach most ML problems in 7 steps

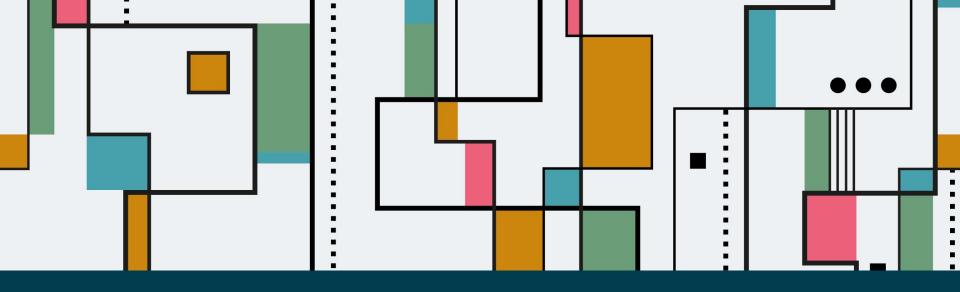


How to approach most ML problems in 7 steps



What data are we going to need?

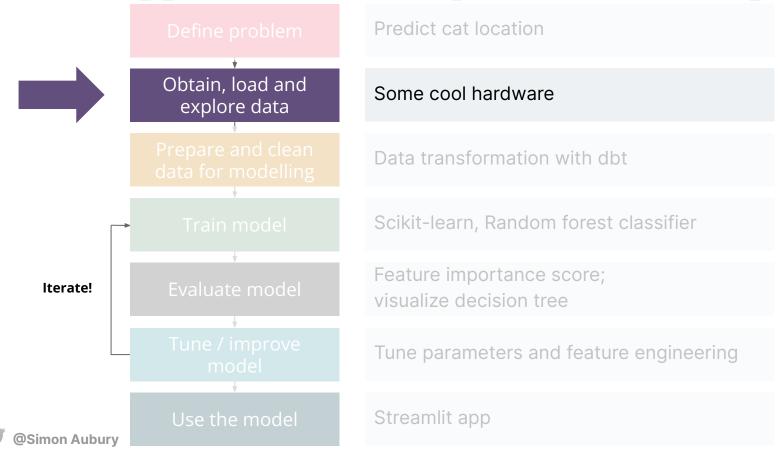




Part 2 - Collect data & build model

/thoughtworks

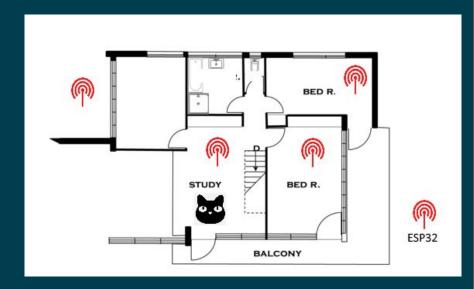
How to approach most ML problems in 7 steps



Hardware for room level cat tracking

Snowy wears a "Tile" — a small, battery powered bluetooth transmitter.

Eight stationary ESP32 receivers to listen for the BLE Tile signal.



Hardware for environment logging

Xiaomi Temperature and Humidity Sensor communicate over large distances via the Zigbee wireless mesh network.

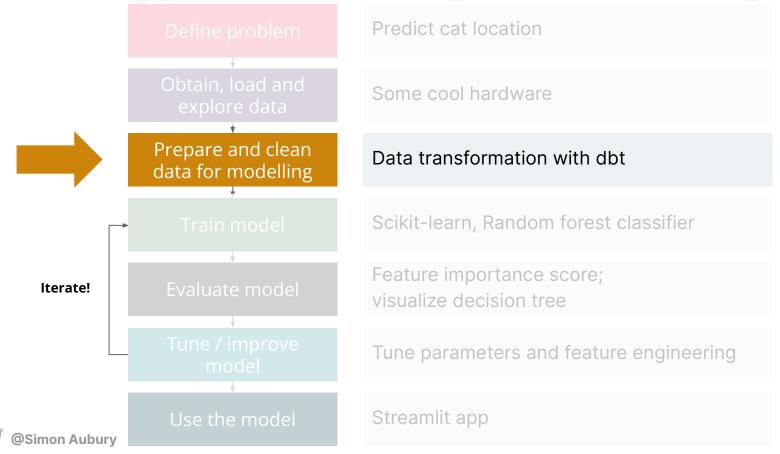
Placed four sensors in the house and two in external locations to capture outside conditions

Data collection platform

Home Assistant container running on home server

- Temperature and humidity measurements via Xiaomi integration
- ESPresense for location monitoring on MQTT topic
- SQLite replaced with Postgres
 - 6 months of retention
 - 18,000 updates a day per sensor

How to approach most ML problems in 7 steps



Summarising data

Lots of stuff

- Home Assistant stores all sensor updates in the "states" table
- Records sensors as they respond
 - 18,000 inserts a day per sensor
 - 120,000 inserts a day for useful sensors
 - Everything as time sequenced updates
- Goal is to summarise the data into hourly updates

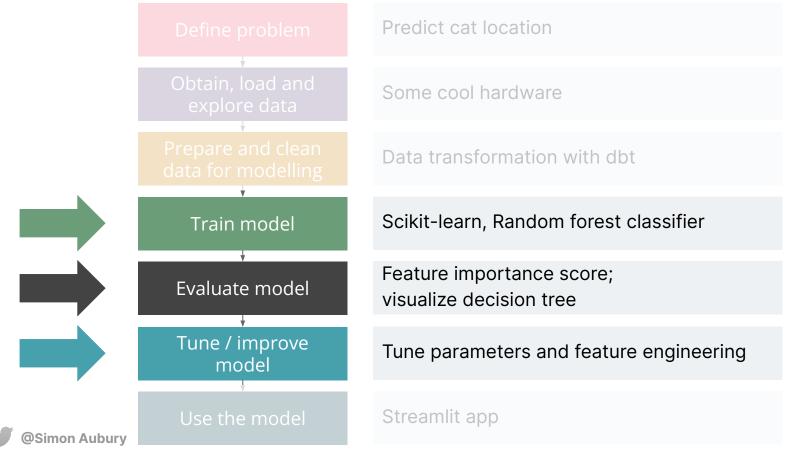
RBC entity_id	1 ② created	7:	RBC attributes	7:
sensor.snowy_tile	2021-12-08 17:12	:03.634 +1100	{"distance":1.64,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	:08.607 +1100	{"distance":1.59,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	2:13.628 +1100	{"distance":1.5,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	:23.377 +1100	{"distance":1.4,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	29.489 +1100	{"distance":1.43,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	2:37.412 +1100	{"distance":1.45,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	:42.406 +1100	{"distance":1.4,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	:45.408 +1100	{"distance":1.25,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12	:50.489 +1100	{"distance":1.22,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	:07.492 +1100	{"distance":1.25,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	3:17.446 +1100	{"distance":1.32,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	22.449 +1100	{"distance":1.4,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	3:27.557 +1100	{"distance":1.48,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	:31.563 +1100	{"distance":1.58,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	:36.054 +1100	{"distance":1.75,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	:45.584 +1100	{"distance":1.83,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13	:47.623 +1100	{"distance":2.39,"friendly_name":"Snowy Tile"}	
sensor snowy tile	2021-12-08 17:13	3:51 627 +1100	{"distance":2 22 "friendly_name":"Snowy Tile"}	

created_local_hr	day_of_week	hr_of_day	indoor_temp	outside_temp	outside_humidity	cat_location
30/10/21 4:00	Saturday	04	24	18	44	study
30/10/21 5:00	Saturday	05	24	18	45	dining
30/10/21 6:00	Saturday	06	24	17	48	outside
30/10/21 7:00	Saturday	07	23	18	54	bedroom
30/10/21 8:00	Saturday	08	23	20	53	bedroom
30/10/21 9:00	Saturday	09	23	20	50	dining
30/10/21 10:00	Saturday	10	23	21	46	dining
30/10/21 11:00	Saturday	11	23	23	42	dining
30/10/21 12:00	Saturday	12	23	24	37	winter_garden
30/10/21 13:00	Saturday	13	24	24	37	study
30/10/21 14:00	Saturday	14	24	23	38	study
30/10/21 15:00	Saturday	15	24	22	40	study
30/10/21 16:00	Saturday	16	24	21	42	dining

dbt - let's SQL it ...


```
{{ config(materialized='view') }}
with cte AS
    select created_local_hr
    , state
    , count(*)
    , ROW NUMBER() OVER (PARTITION BY created local hr ORDER BY COUNT(*) DESC) rn
    from {{ ref('state clean') }}
    where entity_id = 'sensor.snowy_tile'
    group by created_local_hr, state
select created_local_hr, state as cat_location
from cte
where rn=1
 Lineage Graph
                                     cat_events
                                                                      all events
   state clean
                                    house events
```


How to approach most ML problems in 7 steps

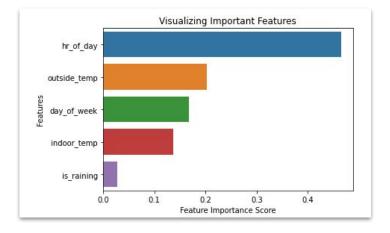


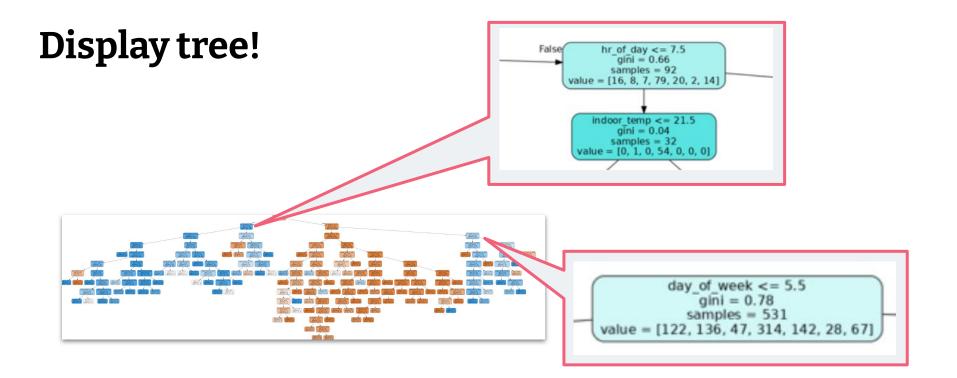
Model - Random forest decision tree

Scikit-learn, Logistic Regression

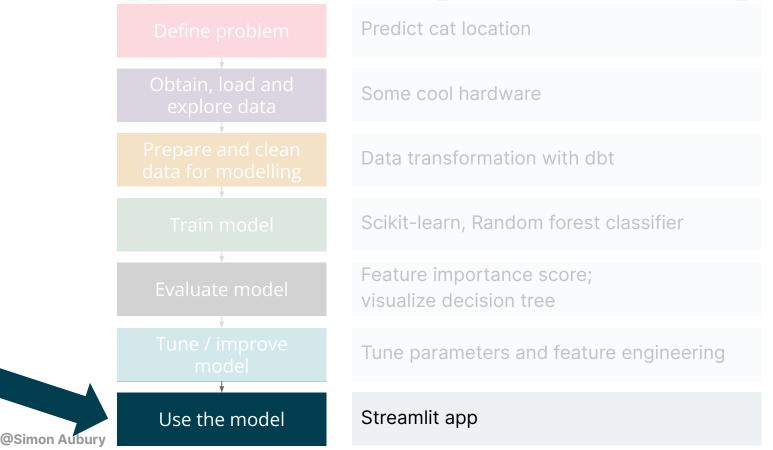
		Dei	rived featur	e		Derived:	feature
		7				7	
created_local_hr	day_of_week	hr_of_day	indoor_temp	outside_temp	outside_humidity	is_raining	cat_location
30/10/21 4:00	Saturday	04	24	18	44	FALSE	study
30/10/21 5:00	Saturday	05	24	18	45	FALSE	dining
30/10/21 6:00	Saturday	06	24	17	48	FALSE	outside
30/10/21 7:00	Saturday	07	23	18	54	FALSE	bedroom
30/10/21 8:00	Saturday	08	23	20	53	FALSE	bedroom
30/10/21 9:00	Saturday	09	23	20	50	FALSE	dining
30/10/21 10:00	Saturday	10	23	21	46	FALSE	dining
30/10/21 11:00	Saturday	11	23	23	42	FALSE	dining
30/10/21 12:00	Saturday	12	23	24	37	FALSE	winter_garder
30/10/21 13:00	Saturday	13	24	24	37	FALSE	study
30/10/21 14:00	Saturday	14	24	23	38	FALSE	study
30/10/21 15:00	Saturday	15	24	22	40	FALSE	study
30/10/21 16:00	Saturday	16	24	21	42	FALSE	dining
30/10/21 17:00	Saturday	17	23	20	45	FALSE	outside
30/10/21 18:00	Saturday	18	23	19	47	FALSE	outside
30/10/21 19:00	Saturday	19	23	18	47	FALSE	bedroom

```
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
import pickle
import numpy as np
cat df = pd.read csv('./cat events.csv')
# cat df.head()
# extract just the hour
cat_df['hr_of_day'] = cat_df['created_local_hr'].str[11:13].astype(int)
cat_df['day_of_week'] = pd.to_datetime(cat_df['created_local_hr']).dt.dayofweek.astype
cat_df.drop('created_local_hr', axis=1, inplace=True)
cat_df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=True)
cat_df['is_raining'] = False
# DataFrame.where replace values where the condition is *False*. Read this as "when out
cat_df['is_raining'].where(cat_df['outside_humidity'] < 90.0, True, inplace=True)
# Drop outside_humidity now we have is_raining
cat_df.drop('outside_humidity', axis=1, inplace=True)
# Add a simple classification - is-nicho
cat df['is nicho'] = 'Yes'
cat_df['is_nicho'].where(cat_df['cat_location'] == 'nicholas', 'No', inplace=True)
```





How to approach most ML problems in 7 steps

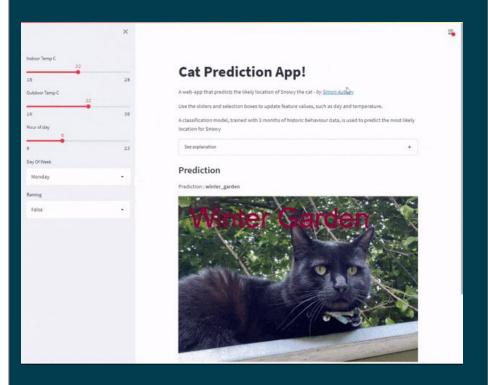


30

Streamlit App

You can try this yourself

https://cat-predict-app.herokuapp.com



What I've learnt & what's next?

/thoughtworks

What I've learnt & what's next

- Intuitively think I'm missing features
 - Rain on the ground and WFH status
 - Humidity is not the same as raining
 - Are cats actually predictable?

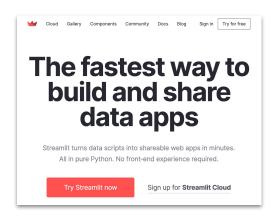
- Can ML predict where my cat is now?
 - Yes!

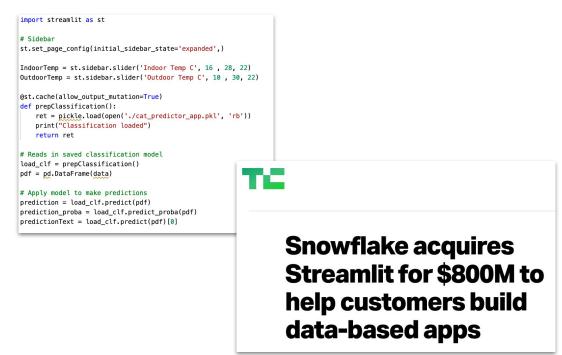
Q&A

https://github.com/saubury/cat-predict

/thoughtworks

Streamlit





Streamlit - open-source python library for creating and sharing web apps

Decision Trees

Machine learning are algorithms that learn from examples. I wanted to build a ML model to predict where my cat Snowy was likely to go knowing the temperature and time. You can use this website to predict where she is likely to be by moving the sliders around on the left.

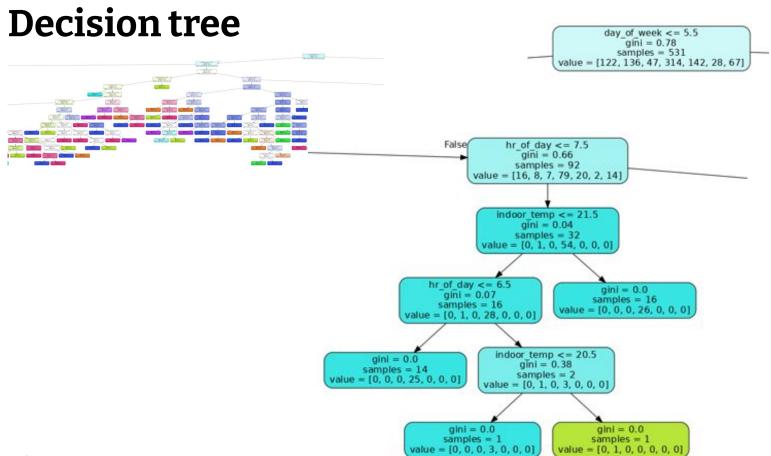
This website uses classification - a predictive model that assigns a class label to inputs, based on many examples it has been trained on from thousands of past observations of time of day, temperature and location.

Summarising data

DBT stuff

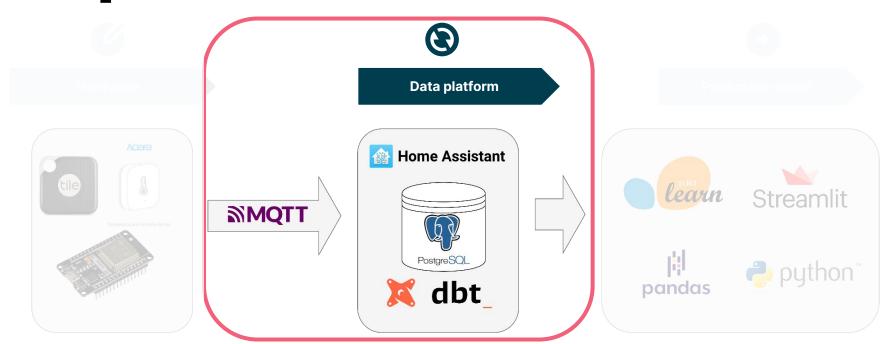
```
with cte AS
                                                                                    select created_local_hr
                                                                                    , state
                                                                                    , count(*)
                                                                                    , ROW_NUMBER() OVER (PARTITION BY created_local_hr ORDER BY COUNT(*) DESC) rn
                                                                                    from state clean
                                                                                    where entity_id = 'sensor.snowy_tile'
                                                                                    group by created_local_hr, state
                                                                             select created local hr, state as cat location
03:49:54 1 of 4 START table model hass_schema.state_clean..........................[RUN]
03:49:54 1 of 4 OK created table model hass_schema.state_clean..................[SELECT 119681 in 0.20s]
03:49:54 2 of 4 START view model hass_schema.cat_events......[RUN]
03:49:54 3 of 4 START view model hass_schema.house_events......................[RUN]
03:49:54  3 of 4 OK created view model hass_schema.house_events...............[CREATE VIEW in 0.04s]
03:49:54 4 of 4 START view model hass_schema.all_events......[RUN]
03:49:54  4 of 4 OK created view model hass_schema.all_events.................[CREATE VIEW in 0.04s]
 3:49:54 Finished running 1 table model, 3 view models in 0.47s.
```


Data extract



Collect data

Data platform



Overview

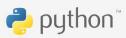
Hardware

Moara

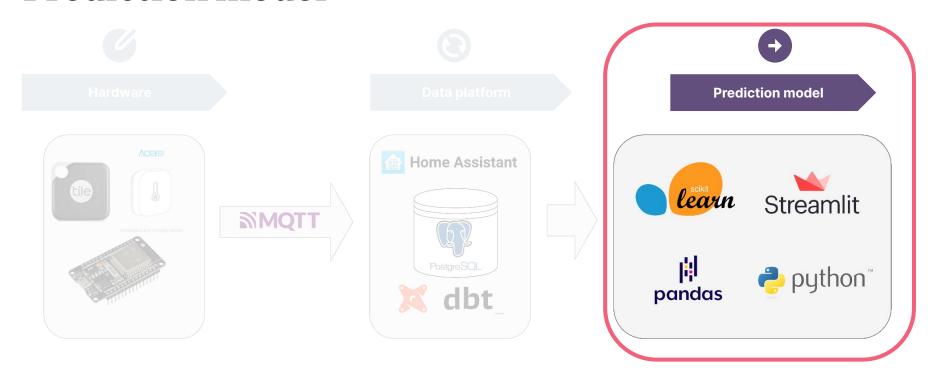
Data platform

dbt

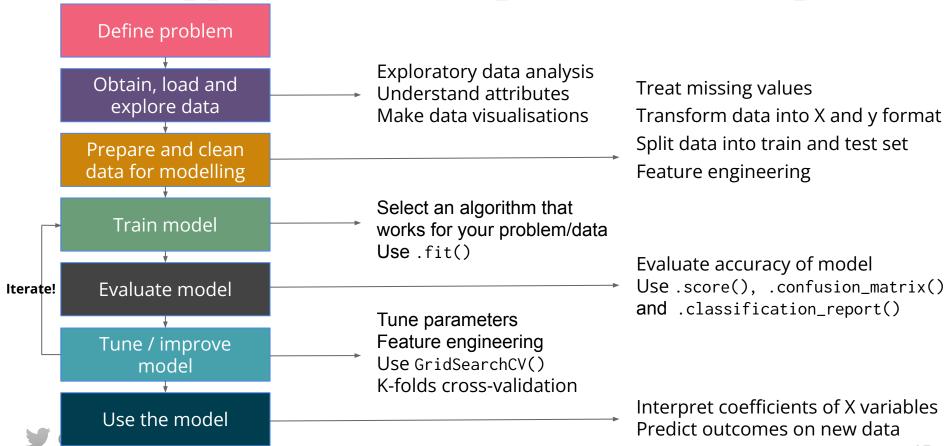
Prediction model



Prediction model



How to approach most ML problems in 7 steps



Model 1 - Cat in son's room?

Scikit-learn, Logistic Regression

```
# extract just the hour
df['hr of day'] = df['created local hr'].str[11:13].astype(int)
df['day of week'] = pd.to datetime(df['created local hr']).dt.dayofweek.astype(int)
df.drop('created_local_hr', axis=1, inplace=True)
df.dropna(axis=0, how='any', thresh=None, subset=None, inplace=True)
df['is raining'] = False
# DataFrame.where replace values where the condition is *False*. Read this as "when outside humidity < 70 is false" then set raining to True
df['is raining'].where(df['outside humidity'] < 90.0, True, inplace=True)
df['is nicho'] = 1
df['is nicho'].where(df['cat location'] == 'nicholas', 0, inplace=True)
df.drop('cat location', axis=1, inplace=True)
display(df.head(5))
#print (df.dtypes)
                                                                                                    Accuracy: 0.8844765342960289
                                                                                                    Precision: 0.8701298701298701
   indoor_temp outside temp outside humidity hr_of_day day_of_week is_raining is_nicho
                                                                                                    Recall: 0.7528089887640449
                                                                  5
0
           24.0
                        18.0
                                                                          False
                                                                                       0
          24.0
                        18.0
                                         45.0
                                                                          False
                                                                                      0
           24.0
                        17.0
                                         48.0
                                                                          False
3
           23.0
                        18.0
                                                     7
                                                                  5
                                                                          False
                                         54.0
           23.0
                        20.0
                                         53.0
                                                                  5
                                                                          False
                                                                                       0
```


Part 4 - Prediction model

/thoughtworks

Part 3 - Data platform

/thoughtworks

