

Can ML predict where my cat is now?

Queensland Advanced Analytics Wednesday, August 24, 2022

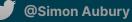
Simon Aubury

/thoughtworks

https://github.com/saubury/cat-predict

Simon Aubury

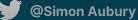
Principal Data Engineer



Could I train a model to predict where Snowy would go throughout her day?

Part 1 - ML Bootcamp

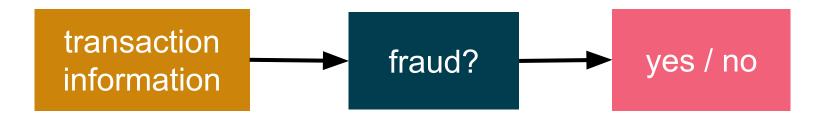
/thoughtworks

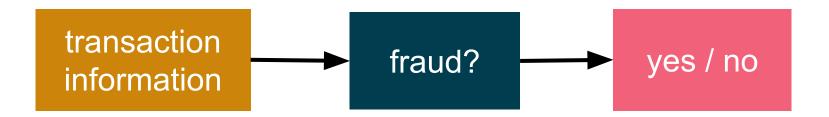


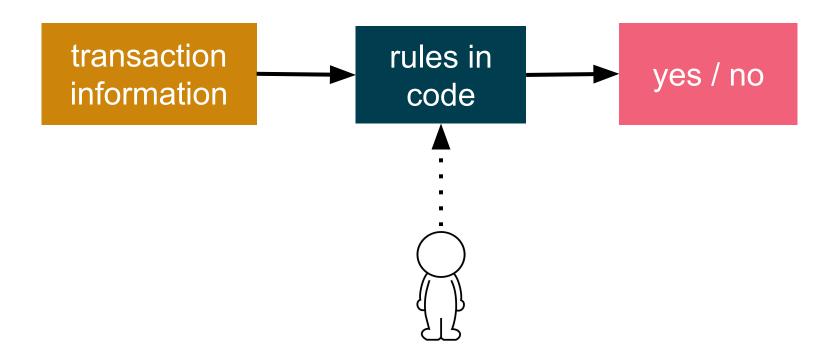
Bootcamp

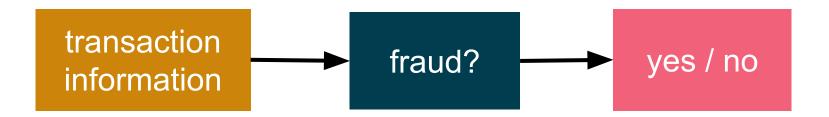
What are the sort of scenarios we see ML useful for?

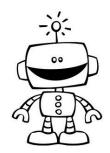
Predicting a value/category	Recommendations	Natural language understanding	lmage understanding
 Predicting a numerical value based on the sequence of prior values How much will this house sell for? How long until a specific component in a factory fails? Is a user { New, Established, Fickle } ? 	Understand the past relationship of users and items so we can suggest new items to users. • Netflix • Amazon • People you might know; LinkedIn	NLU is an obvious place to build on for clients that already have lots of text • Very close relationship to search	 Image understanding has made huge progress in last 5 years Convolutional neural networks are the key technique Provide the ability to convert from images to numerical representation

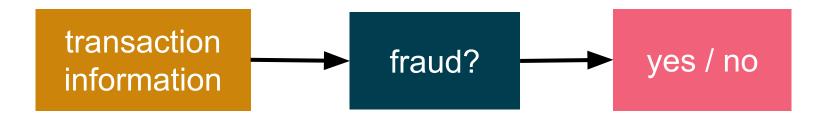


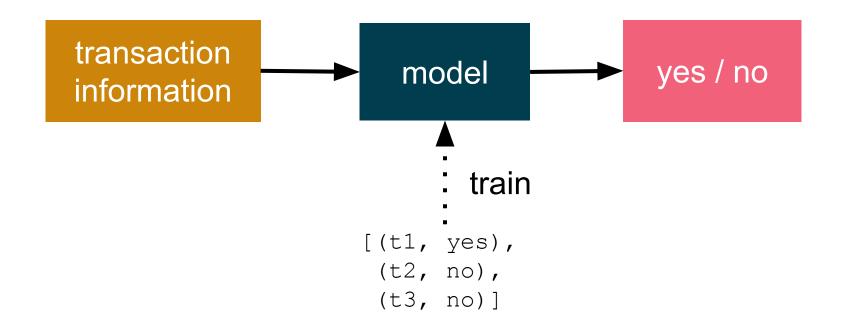


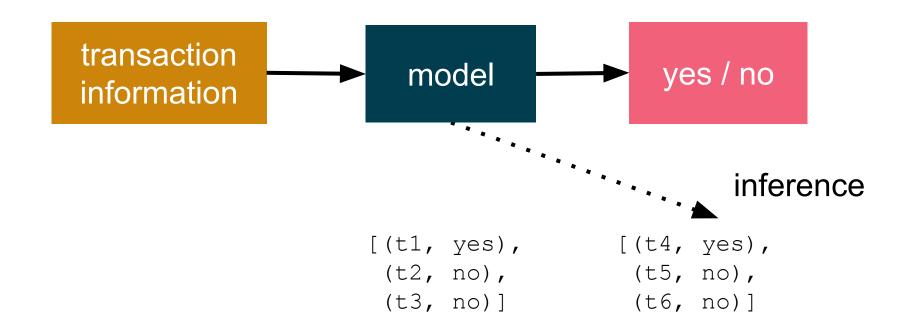


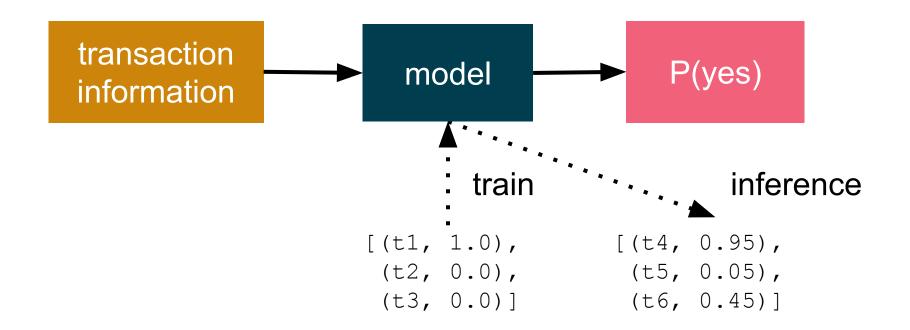


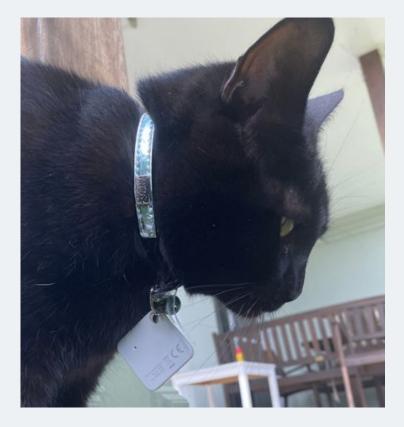






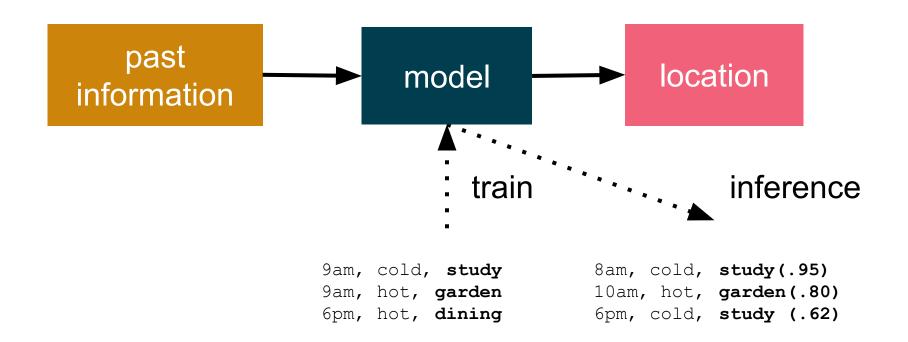


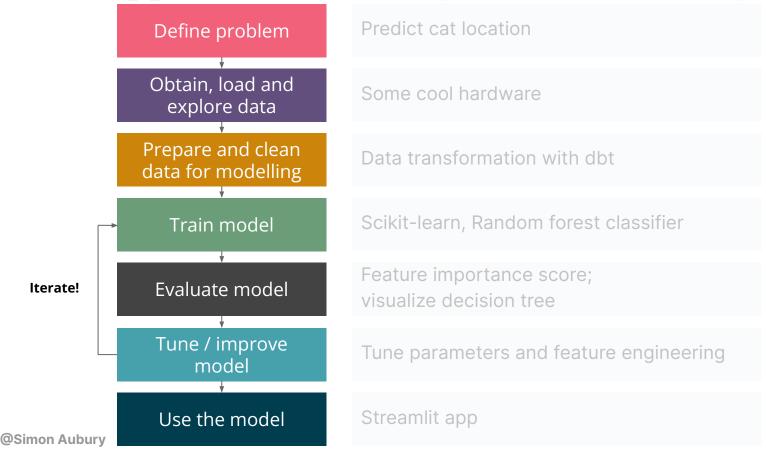


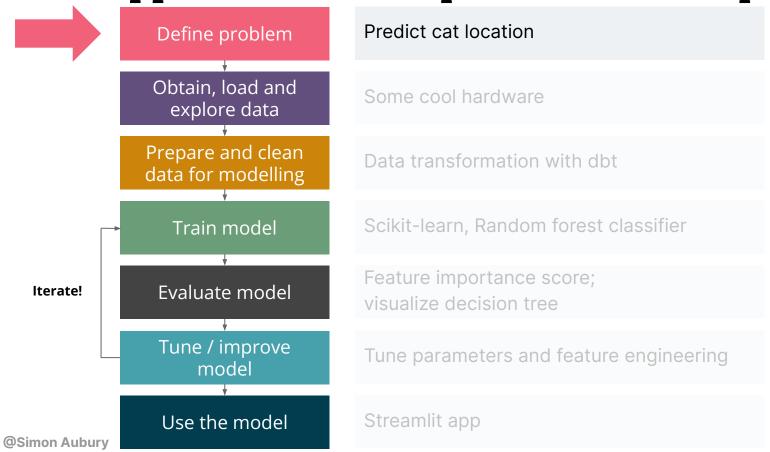


What does this mean?

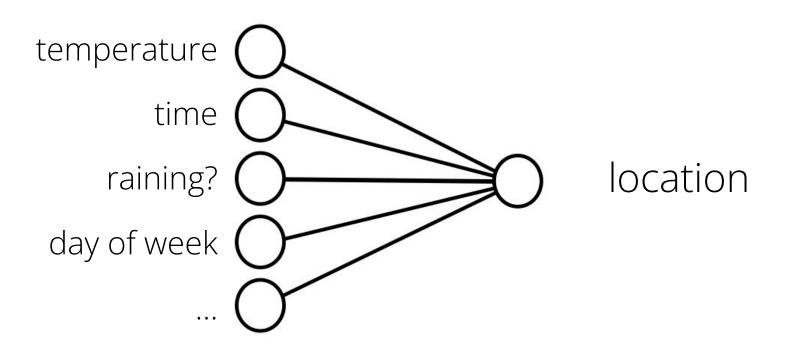
Cat location prediction

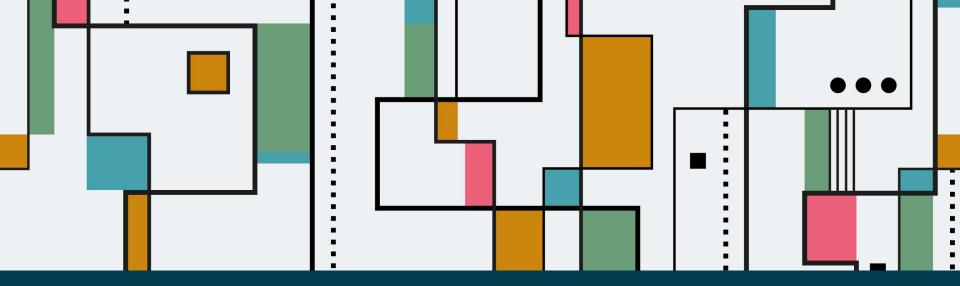






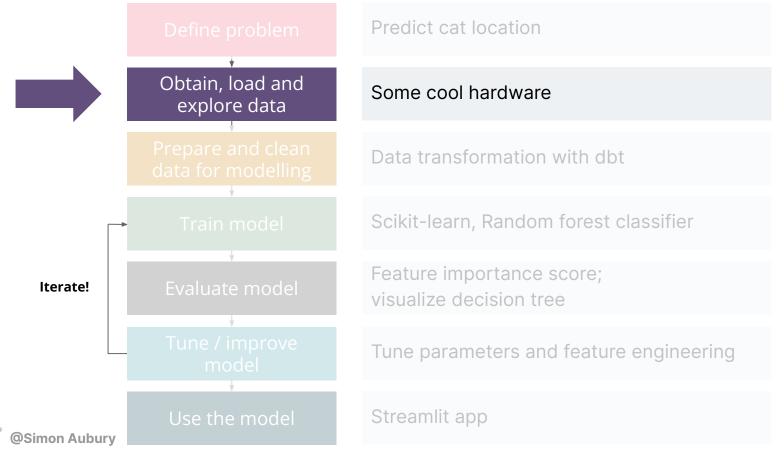
What data are we going to need?





Part 2 - Collect data & build model

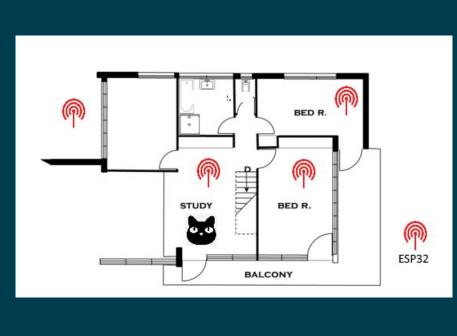
/thoughtworks



Hardware for room level cat tracking

Snowy wears a "Tile" — a small, battery powered bluetooth transmitter.

Eight stationary ESP32 receivers to listen for the BLE Tile signal.



Hardware for environment logging

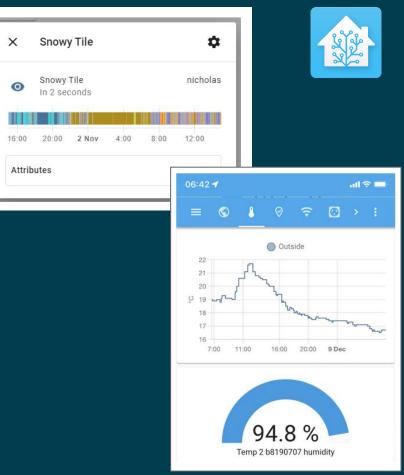
Xiaomi Temperature and Humidity Sensor communicate over large distances via the Zigbee wireless mesh network.

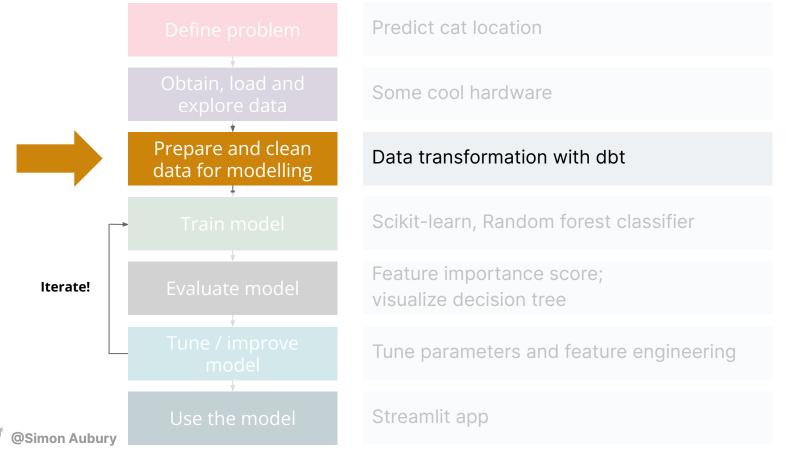
Placed four sensors in the house and two in external locations to capture outside conditions

Data collection platform

Home Assistant container running on home server

- Temperature and humidity measurements via Xiaomi integration
- ESPresense for location monitoring on MQTT topic
- SQLite replaced with Postgres
 - 6 months of retention
 - 18,000 updates a day **per sensor**





Summarising data

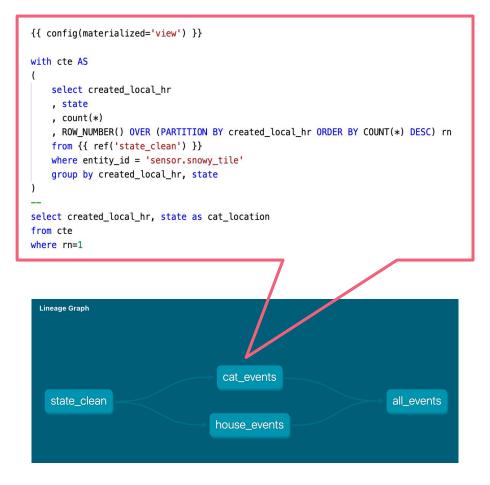
Lots of stuff

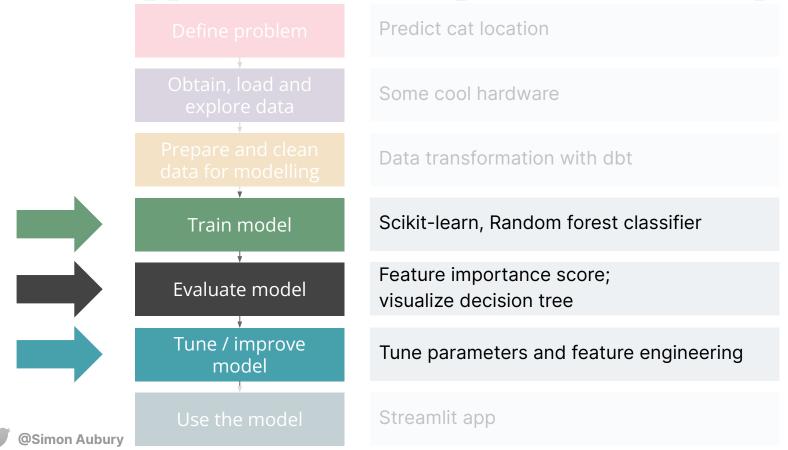
- Home Assistant stores all sensor updates in the "states" table
- Records sensors as they respond
 - 18,000 inserts a day per sensor
 - 120,000 inserts a day for useful sensors
 - Everything as time sequenced updates
- Goal is to summarise the data into hourly updates

RBC entity_id TI	🕗 created 🛛 📢	RBC attributes	71
sensor.snowy_tile	2021-12-08 17:12:03.634 +1100	{"distance":1.64,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:08.607 +1100	{"distance":1.59,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:13.628 +1100	{"distance":1.5,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:23.377 +1100	{"distance":1.4,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:29.489 +1100	{"distance":1.43,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:37.412 +1100	{"distance":1.45,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:42.406 +1100	{"distance":1.4,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:45.408 +1100	{"distance":1.25,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:12:50.489 +1100	{"distance":1.22,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:07.492 +1100	{"distance":1.25,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:17.446 +1100	{"distance":1.32,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:22.449 +1100	{"distance":1.4,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:27.557 +1100	{"distance":1.48,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:31.563 +1100	{"distance":1.58,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:36.054 +1100	{"distance":1.75,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:45.584 +1100	{"distance":1.83,"friendly_name":"Snowy Tile"}	
sensor.snowy_tile	2021-12-08 17:13:47.623 +1100	{"distance":2.39,"friendly_name":"Snowy Tile"}	
sensor snowy tile	2021-12-08 17:13:51 627 +1100	{"distance"·2 22 "friendly_name"·"Snowy Tile"}	

created_local_hr	day_of_week	hr_of_day	indoor_temp	outside_temp	outside_humidity	cat_location
30/10/21 4:00	Saturday	04	24	18	44	study
30/10/21 5:00	Saturday	05	24	18	45	dining
30/10/21 6:00	Saturday	06	24	17	48	outside
30/10/21 7:00	Saturday	07	23	18	54	bedroom
30/10/21 8:00	Saturday	08	23	20	53	bedroom
30/10/21 9:00	Saturday	09	23	20	50	dining
30/10/21 10:00	Saturday	10	23	21	46	dining
30/10/21 11:00	Saturday	11	23	23	42	dining
30/10/21 12:00	Saturday	12	23	24	37	winter_garder
30/10/21 13:00	Saturday	13	24	24	37	study
30/10/21 14:00	Saturday	14	24	23	38	study
30/10/21 15:00	Saturday	15	24	22	40	study
30/10/21 16:00	Saturday	16	24	21	42	dining
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

dbt - let's SQL it ...





Model - Random forest decision tree

Scikit-learn, Logistic Regression

	Derived feature			e	Derived feature			
created_local_hr	day_of_week	hr_of_day	indoor_temp	outside_temp	outside_humidity	is_raining	cat_location	
30/10/21 4:00	Saturday	04	24	18	44	FALSE	study	
30/10/21 5:00	Saturday	05	24	18	45	FALSE	dining	
30/10/21 6:00	Saturday	06	24	17	48	FALSE	outside	
30/10/21 7:00	Saturday	07	23	18	54	FALSE	bedroom	
30/10/21 8:00	Saturday	08	23	20	53	FALSE	bedroom	
30/10/21 9:00	Saturday	09	23	20	50	FALSE	dining	
30/10/21 10:00	Saturday	10	23	21	46	FALSE	dining	
30/10/21 11:00	Saturday	11	23	23	42	FALSE	dining	
30/10/21 12:00	Saturday	12	23	24	37	FALSE	winter_garder	
30/10/21 13:00	Saturday	13	24	24	37	FALSE	study	
30/10/21 14:00	Saturday	14	24	23	38	FALSE	study	
30/10/21 15:00	Saturday	15	24	22	40	FALSE	study	
30/10/21 16:00	Saturday	16	24	21	42	FALSE	dining	
30/10/21 17:00	Saturday	17	23	20	45	FALSE	outside	
30/10/21 18:00	Saturday	18	23	19	47	FALSE	outside	
30/10/21 19:00	Saturday	19	23	18	47	FALSE	bedroom	

import pandas as pd

from sklearn.ensemble import RandomForestClassifier
import pickle
import numpy as np

cat_df = pd.read_csv('./cat_events.csv')
cat_df.head()

extract just the hour

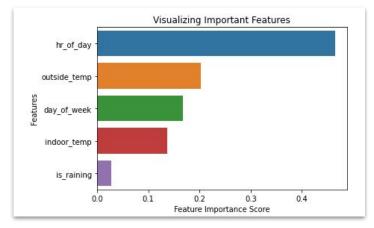
cat_df['hr_of_day'] = cat_df['created_local_hr'].str[11:13].astype(int)
cat_df['day_of_week'] = pd.to_datetime(cat_df['created_local_hr']).dt.dayofweek.astype
cat_df.drop('created_local_hr', axis=1, inplace=True)
cat_df.dropn(axis=0, how='any', thresh=None, subset=None, inplace=True)

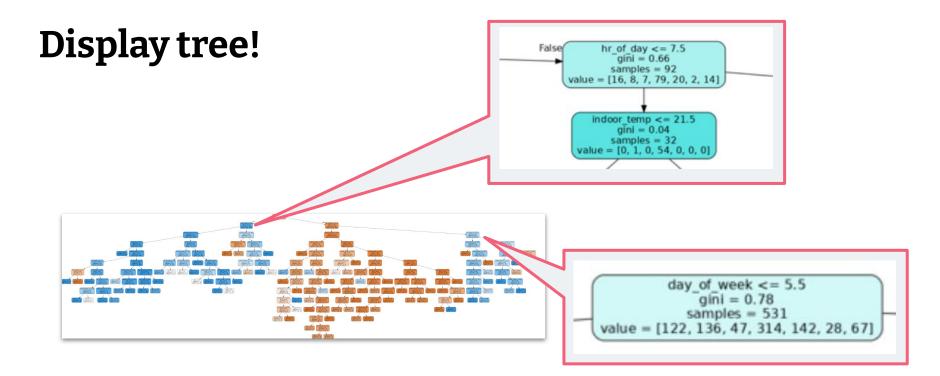
cat_df['is_raining'] = False

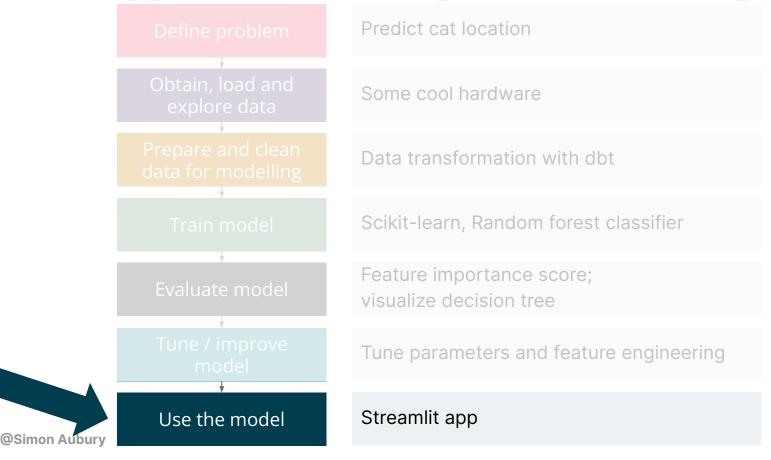
DataFrame.where replace values where the condition is *False*. Read this as "when ou cat_df['is_raining'].where(cat_df['outside_humidity'] < 90.0, True, inplace=True) Clear Out

Drop outside_humidity now we have is_raining cat_df.drop('outside_humidity', axis=1, inplace=True)

Add a simple classification - is-nicho cat_df('is_nicho'] = 'Yes' cat_df['is_nicho'].where(cat_df['cat_location'] == 'nicholas', 'No', inplace=True)



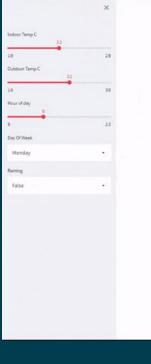




Streamlit App

You can try this yourself

https://cat-predict-app.herokuapp.com



Cat Prediction App!

A web-app that predicts the likely location of Snowy the cat - by Smon Automy

Use the sliders and selection boxes to update feature values, such as day and temperature.

A classification model, trained with 3 months of historic behaviour data, is used to predict the most likely location for Snowy

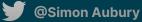
See explanation			+

Prediction

Prediction:winter_garden

What I've learnt & what's next?

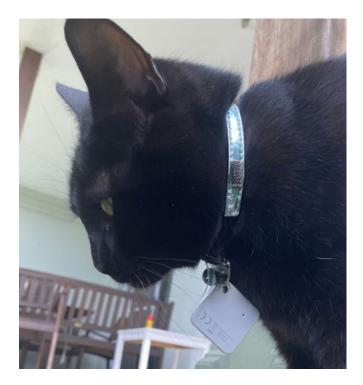
/thoughtworks



What I've learnt & what's next

- Intuitively think I'm missing features
 - Rain on the ground and WFH status
 - Humidity is not the same as raining
 - Are cats actually predictable?

Can ML predict where my cat is now?
 Yes!



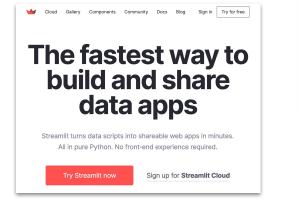
https://github.com/saubury/cat-predict

Published in Towards Data Science

https://towardsdatascience.com/can-ml-predict-where-my-cat-is-now-part-2-7efaec267339

/thoughtworks

Streamlit



import streamlit as st
Sidebar
st.set_page_config(initial_sidebar_state='expanded',)
IndoorTemp = st.sidebar.slider('Indoor Temp C', 16 , 28, 22)
OutdoorTemp = st.sidebar.slider('Outdoor Temp C', 10 , 30, 22)
@st.cache(allow_output_mutation=True)
def prepClassification():
 ret = pickle.load(open('./cat_predictor_app.pkl', 'rb'))
 print("Classification loaded")
 return ret
Reads in saved classification()

pdf = pd.DataFrame(data)

Apply model to make predictions prediction = load_clf.predict(pdf) prediction_proba = load_clf.predict_proba(pdf) predictionText = load_clf.predict(pdf)[0]

Snowflake acquires Streamlit for \$800M to help customers build data-based apps

Streamlit - open-source python library for creating and sharing web apps

Decision Trees

Machine learning are algorithms that learn from examples. I wanted to build a ML model to predict where my cat Snowy was likely to go knowing the temperature and time. You can use this website to predict where she is likely to be by moving the sliders around on the left.

This website uses classification - a predictive model that assigns a class label to inputs, based on many examples it has been trained on from thousands of past observations of time of day, temperature and location.

Summarising data

03:49:54

 82:49:54
 1
 of
 4 START table mo.

 82:49:54
 1
 of
 4 OK created table

 82:49:54
 2
 of
 4 START view mod.

 83:49:54
 2
 of
 4 OK created view

 83:49:54
 2
 of
 4 OK created view

 83:49:54
 3
 of
 4 START view mod.

 83:49:54
 3
 of
 4 START view mod.

 83:49:54
 3
 of
 4 START view mod.

 83:49:54
 4
 of
 4 START view mod.

 83:49:54
 4
 of
 4 START view mod.

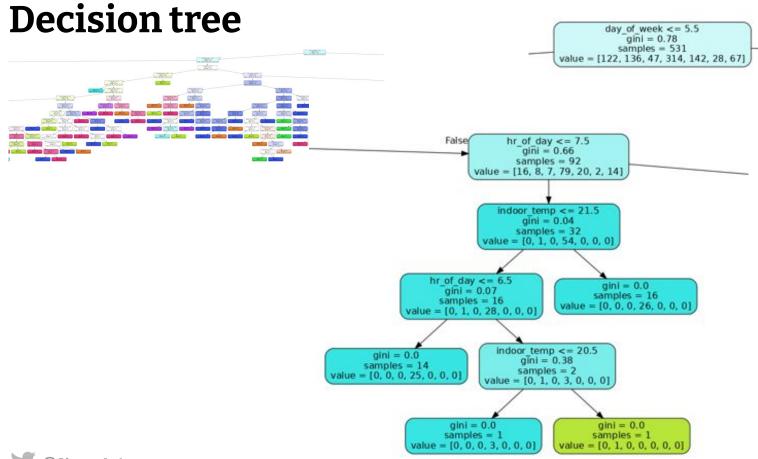
DBT stuff

 \bullet

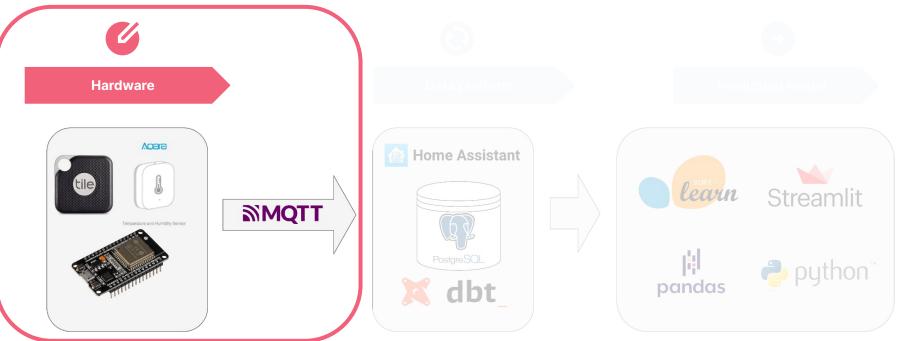
	with cte AS
	select created_local_hr
	, state
	, count(*)
	<pre>, ROW_NUMBER() OVER (PARTITION BY created_local_hr ORDER BY COUNT(*) DESC) rn</pre>
	from state_clean
	<pre>where entity_id = 'sensor.snowy_tile'</pre>
	group by created_local_hr, state
	<u>select created lo</u> cal_hr, state as cat_location
del hass_schema.state_clean e model hass_schema.state_clean	
l hass_schema.cat_events	[RUN]
v model hass_schema.cat_events	
model hass_schema.house_events	
l hass_schema.all_events	

03:49:54 03:49:54 Finished running 1 table model, 3 view models in 0.47s.

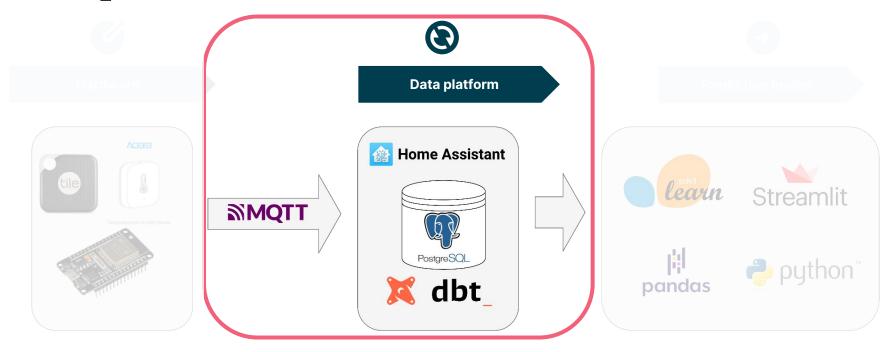
Data extract

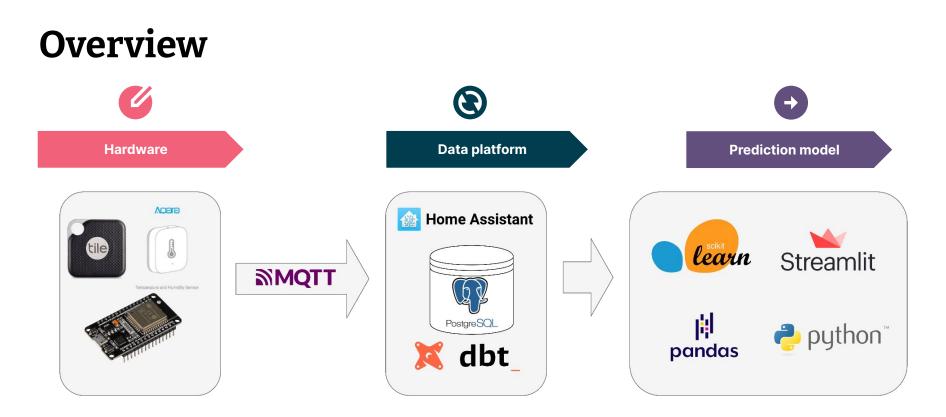


Collect data

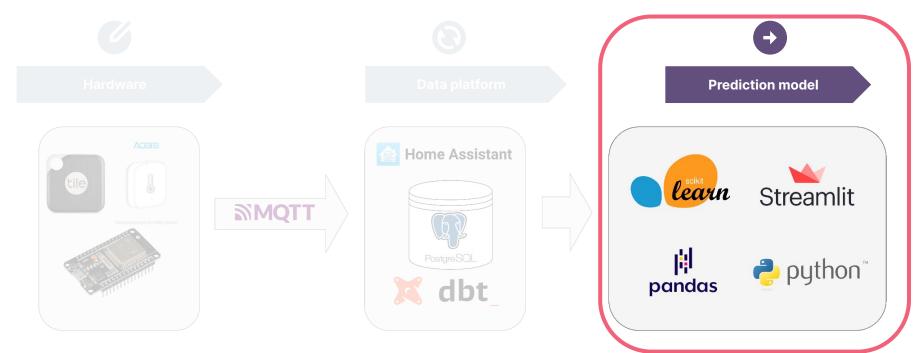


Data platform

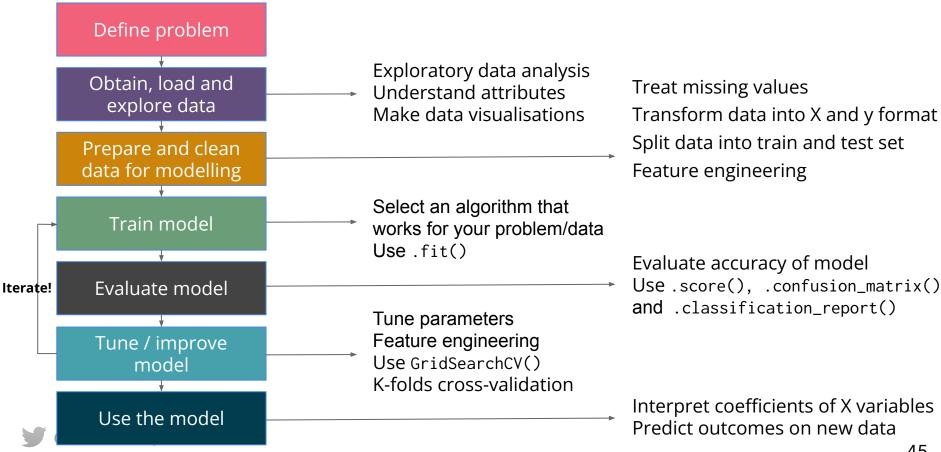




Prediction model



How to approach most ML problems in 7 steps

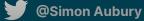


Model 1 - Cat in son's room?

Scikit-learn, Logistic Regression

Part 4 - Prediction model

/thoughtworks



Part 3 - Data platform

/thoughtworks

