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Could I train a model to 
predict where Snowy 
would go throughout 
her day?
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Part 1 - ML Bootcamp
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What are the sort of scenarios we see ML useful for?

● 5

Predicting a 
value/category

Bootcamp

Predicting a numerical 
value based on the 
sequence of prior 
values

● How much will this 
house sell for?

● How long until a 
specific component in 
a factory fails?

● Is a user { New, 
Established, Fickle } ? 

Recommendations

Understand the past 
relationship of users 
and items so we can 
suggest new items to 
users.

● Netflix
● Amazon
● People you might 

know; LinkedIn

Natural language 
understanding

NLU is an obvious 
place to build on for 
clients that already 
have lots of text

● Very close 
relationship to search

Image 
understanding

Image understanding 
has made huge 
progress in last 5 years

● Convolutional neural 
networks are the key 
technique

● Provide the ability to 
convert from images 
to numerical 
representation
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Data to insight

transaction
information yes / nofraud?
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Data to insight

[(t1, yes),
 (t2, no),
 (t3, no),
 ...]

transaction
information yes / nofraud?
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Data to insight

[(t1, yes),
 (t2, no),
 (t3, no)]

train

transaction
information yes / nomodel
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Data to insight

[(t1, yes),
 (t2, no),
 (t3, no)]

[(t4, yes),
 (t5, no),
 (t6, no)]

inference

transaction
information yes / nomodel
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Data to insight

[(t4, 0.95),
 (t5, 0.05),
 (t6, 0.45)]

[(t1, 1.0),
 (t2, 0.0),
 (t3, 0.0)]

inferencetrain

transaction
information P(yes)model
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Cats
What does this mean?
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Cat location prediction

8am, cold, study(.95)
10am, hot, garden(.80)
6pm, cold, study (.62)

9am, cold, study
9am, hot, garden
6pm, hot, dining

inferencetrain

past
information locationmodel
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How to approach most ML problems in 7 steps
Define problem

Obtain, load and 
explore data

Prepare and clean 
data for modelling

Train model

Evaluate model

Tune / improve 
model

Use the model

Iterate!

Predict cat location

Some cool hardware

Data transformation with dbt

Scikit-learn, Random forest classifier

Feature importance score; 
visualize decision tree

Tune parameters and feature engineering

Streamlit app
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What data are we going to need?

temperature

time

raining?

day of week

...

location
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Part 2 - Collect data & build model
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Hardware for room 
level cat tracking

21

Snowy wears a “Tile” — a small, battery 
powered bluetooth transmitter. 

Eight stationary ESP32 receivers to 
listen for the BLE Tile signal. 
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Hardware for 
environment logging
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Xiaomi Temperature and Humidity 
Sensor communicate over large 
distances via the Zigbee wireless mesh 
network. 

Placed four sensors in the house and 
two in external locations to capture 
outside conditions
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Data collection platform
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Home Assistant container running on home 
server

● Temperature and humidity 
measurements via Xiaomi integration 

● ESPresense for location monitoring on 
MQTT topic

● SQLite replaced with Postgres 
○ 6 months of retention
○ 18,000 updates a day per sensor
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Summarising data
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Lots of stuff

● Home Assistant stores all sensor 
updates in the “states” table

● Records sensors as they respond
○ 18,000 inserts a day per sensor
○ 120,000 inserts a day for useful sensors
○ Everything as time sequenced updates 

● Goal is to summarise the data into 
hourly updates
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dbt - let’s SQL it …
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Model - Random forest decision tree
Scikit-learn, Logistic Regression

Derived feature Derived feature
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Display tree!
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Streamlit App
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You can try this yourself

https://cat-predict-app.herokuapp.com 



@Simon Aubury

What I've learnt & what’s next?
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What I've learnt & what’s next

● Intuitively think I’m missing features
○ Rain on the ground and WFH status
○ Humidity is not the same as raining
○ Are cats actually predictable?

● Can ML predict where my cat is now?
○ Yes!
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Q & A

https://github.com/saubury/cat-predict 

https://towardsdatascience.com/can-ml-predict-where-my-cat-is-now-part-2-7efaec267339
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Streamlit
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Streamlit - open-source python library for 
creating and sharing web apps
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Decision Trees

Machine learning are algorithms that learn from examples. I wanted to build a ML model 
to predict where my cat Snowy was likely to go knowing the temperature and time. You 
can use this website to predict where she is likely to be by moving the sliders around 
on the left.

This website uses classification - a predictive model that assigns a class label to 
inputs, based on many examples it has been trained on from thousands of past 
observations of time of day, temperature and location.
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Summarising data
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DBT stuff

●
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Data extract
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Decision tree
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Collect data

Prediction modelData platformHardware
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Data platform

Prediction modelData platformHardware
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Overview

Prediction modelData platformHardware
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Prediction model

Prediction modelData platformHardware
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How to approach most ML problems in 7 steps
Define problem

Obtain, load and 
explore data

Prepare and clean 
data for modelling

Train model

Evaluate model

Tune / improve 
model

Use the model

Exploratory data analysis 
Understand attributes
Make data visualisations

Treat missing values 
Transform data into X and y format
Split data into train and test set
Feature engineering

Select an algorithm that 
works for your problem/data
Use .fit()

Evaluate accuracy of model
Use .score(), .confusion_matrix() 
and .classification_report()Tune parameters

Feature engineering
Use GridSearchCV()
K-folds cross-validation

Interpret coefficients of X variables
Predict outcomes on new data

Iterate!
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Model 1 - Cat in son’s room?
Scikit-learn, Logistic Regression
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Part 4 - Prediction model
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Part 3 - Data platform
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